skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Zhuocheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2026
  2. Abstract Relativistic Weyl fermion quasiparticles in Weyl semimetal bring the electron’s chirality degree of freedom into the electrical transport and give rise to exotic phenomena. A topological phase transition from a topological trivial phase to a topological non-trivial phase offers a route to control electronic devices through its topological properties. Here, we report the Weyl semimetal phase in hydrothermally grown two-dimensional Tellurium (2D Te) induced by high hydrostatic pressure (up to 2.47 GPa). The unique chiral crystal structure gives rise to chiral fermions with different topological chiral charges ($${{C}}=-{{1}},+{{1}},{{and}}-{{2}}$$ C = 1 , + 1 , a n d 2 ). The highly tunable chemical potential in 2D Te provides comprehensive information for understanding the pressure-dependent electron band structure. The pressure-induced insulator-to-metal transition, two-carrier transport, and the non-trivial π Berry phase shift in quantum oscillations are observed in the 2D Te Weyl semimetal phase. Our work demonstrates the pressure-induced bandgap closing in the inversion asymmetric narrow bandgap semiconductor 2D Te. 
    more » « less